Geochemistry of Sedimentary Carbonates

John W. Morse

Department of Oceanography, Texas A&M University, College Station, TX 77843, U.S.A.

Fred T. Mackenzie

Department of Oceanography, University of Hawaii, Honolulu, HI 96822, U.S.A.

ELSEVIER Amsterdam – Oxford – New York – Tokyo 1990

TABLE OF CONTENTS

Preface	vii
Chapter 1. The CO ₂ -Carbonic Acid System and	
Solution Chemistry	1
Basic Concepts	1
Activity Coefficients in Solutions	10
Influences of Temperature and Pressure	20
The Carbonic Acid System in Seawater	26
Calculation of the Saturation State of Seawater with Respect to	
Carbonate Minerals	34
Concluding Remarks	38
Chapter 2. Interactions Between Carbonate Minerals	
and Solutions	39
Sedimentary Carbonate Minerals	39
Basic Concepts	39
Characteristics of Sedimentary Carbonate Minerals	40
Solubility Behavior of Carbonate Minerals	47
General Considerations	47
Calcite and Aragonite Solubility	51
Methods for the Calculation of Equilibrium Solution	
Solution Composition Under Different Conditions	54
Surface Chemistry of Carbonate Minerals	64
Basic Principles	64
Adsorption of Ions on Carbonate Surfaces	68
Carbonate Dissolution and Precipitation Kinetics	72
Basic Principles	72
Reaction Kinetics in Simple Solutions	72
Reaction Kinetics in Complex Solutions	74
Concluding Remarks	85
Chapter 3. Coprecipitation Reactions and Solid Solutions	
of Carbonate Minerals	87
General Concepts	87
Background Information	87
Basic Chemical Considerations	88

CONTENTS

CONTENTS

Coprecipitation of "Foreign" Ions in Carbonate Minerals	
Examples of Coprecipitation Reactions	
General Models for Partition Coefficients in Carbonates104	1
Magnesian Calcite	;
General Considerations	5
The Fundamental Problems	1
Experimental Observations)
Hypothesis of a Hydrated Magnesian Calcite	2
Stable Isotope Chemistry	1
General Considerations	1
Oxygen Isotopes	5
Carbon Stable Isotopes	3
Concluding Remarks	1
Chapter 4. The Oceanic Carbonate System and Calcium	
Carbonate Accumulation in Deep Sea Sediments13.	3
An Overview of Major Processes	3
The CO ₂ System in Oceanic Waters	5
The Upper Ocean13	5
The Deep Sea14	0
Saturation State of Deep Seawater with Respect to CaCO314	4
Sources and Sedimentation of Deep Sea Carbonates	7
Sources	7
Sedimentation14	9
The Distribution of CaCO ₃ in Deep Sea Sediments and	
Carbonate Lithofacies15	2
General Considerations15	2
The Distribution of CaCO ₃ in Surface Sediments15	6
Factors Controlling the Accumulation of Calcium Carbonate	
in Deep Sea Sediments16	2
General Relations16	2
Factors Leading to Variability	5
Near Interfacial Processes16	7
Variability of Calcium Carbonate Deposition in Deep Sea	
Sediments with Time	3
Influence of Glacial Times17	3
The Impact of Fossil Fuel CO2 on the Ocean-Carbonate	
System17	4
Concluding Remarks	6

Chapter 5. Composition and Source of Shoal-Water	and Place 1
Carbonate Sediments	
Introduction	
Shoal-Water Carbonates in Space and Time	179
Carbonate Grains and Skeletal Parts	
Overview and Examples	
Sediment Classification	
Depositional Environments	
Concluding Statement	
Biomineralization	
General Aspects	
Environmental Controls on Mineralogy	
Stable Isotopes	
Coprecipitation	
Precipitation of Carbonates from Seawater	217
Carbonate Chemistry of Shallow Seawater	
Abiotic Precipitation of CaCO ₃ from Seawater	
Sources of Aragonite Needle Muds	
Formation of Oöids	
Concluding Remarks	
The second se	

Chapter 6. Early Marine Diagenesis of Shoal-Water

Carbonate Sediments	.241
Introduction	.241
Some Preliminary Thermodynamic and Kinetic Considerations.	.241
Very Early Diagenesis	.249
Major Diagenetic Processes	.249
Pore Water Chemistry	.251
Precipitation of Early Carbonate Cements	.256
Dissolution of Carbonates	.268
Concluding Remarks	.275

Chapter 7. Early Non-Marine Diagenesis of

Sedimentary Carbonates	277
Introduction	277
Plate-Tectonic Controls on Diagenesis	280
General Considerations for Early Non-Marine Diagenesis	288
Major Types of Non-Marine Environments	
Water Chemistry	289
Reactivity of Sedimentary Carbonates	291

xiii

CONTENTS

Major Phase Transformations	
The Transformation of Aragonite to Calcite	
Dolomite Formation	
Summary Remarks	
Mass Transfer During Diagenesis	
General Considerations	
Geochemical Constraints on Mass Transfer	
Beachrock Formation	
Lithification in the Meteoric Environment	
Introduction	315
The Meteoric Environment and Cement Precipitates	s318
Bermuda: A Case Study of a Meteoric Diagenetic Environ	ment330
Introduction	330
Geological Framework	
Limestone Chemistry and Isotopic Composition	341
Water Chemistry	
Carbonate Mass Transfer	350
A Brief Synthesis of Meteoric Diagenesis	353
Diagenetic Stages	
Effect of Original Mineralogy	357
Climatic Effects	
Rock-Water Relationships	
Mixed Meteoric-Marine Regime	
Concluding Remarks	
Chapter 8 Carbonates as Sedimentary Rocks in	
Subsurface Processes	
Introduction	
P T and X and Carbonate Mineral Stability	
Subsurface Water Chemistry in Sedimentary Basins	
Continuous Processes	
Pressure Solution	
Dolomitization	
Mud to Spar Neomorphism	
Secondary Porosity	
Cementation in the Subsurface	
Examples of "Models" of Long-Term Diagenesis	400
The Present Ocean Setting	400
The Present Continental Setting	

	The Present Ocean Setting
g423	The Present Continental Setting
	Concluding Remarks

Methane and Carbon Monoxide Fluxes......451

Chapter 9. The Current Carbon Cycle and Human Impact......447

CONTENTS

Human Impact on Carbon Fluxes	459
The Fossil Fuel and Land Use Fluxes	459
Observed Atmospheric CO2 Concentration Increase	464
Future Atmospheric CO2 Concentration Trends	468
Consequences of Increased Atmospheric CO2 Levels	471
The Oceanic System	479
Sources of Calcium, Magnesium, and Carbon	
for Modern Oceans	479
Mass Balance of Ca, Mg, and C in Present Oceans	497
Oceanic Mass Balance of Elements Interactive	
with Ca, Mg, and C	504
Concluding Remarks	509

Chapter 10. Sedimentary Carbonates in the Evolution of

Earth's Surface Environment	511
Introduction	511
Sedimentary Rock Mass-Age Distributions	512
Secular Trends in Sedimentary Rock Properties	517
Lithologic Types	517
Chemistry and Mineralogy	521
Carbon Cycling Modeling	553
Introduction and Development of a Global Model	553
Glacial-Interglacial Changes of Carbon Dioxide	
Long-Term Changes of Atmospheric CO2	571
Phanerozoic Cycling of Sedimentary Carbonates	577
Synopsis of the Origin and Evolution of the Hydrosphere-	
Atmosphere-Sedimentary Lithosphere	582
Origin of the Hydrosphere	582
The Early Stages	584
The Transitional Stage	589
Modern Conditions	592
Concluding Remarks	

XV

CONTENTS

Epilogue	
Introduction	
The Road Traveled	
The State of the Art	
Ever Onward	
References	609

Index	81

xvi